Basics of Artificial Intelligence – VII

Last week, we used Python libraries to import the data, set the input and out values for the computer to learn, and split the data into groups. Next, we will actually train the computer to learn the relationships. For this, we can use a variety of different tools. While each one has its pros and cons, the novice can simply run each one and determine which one provides the best results. In addition, we will print the results for analysis.

Logistic Regression

# train the model
logreg = LogisticRegression()
logreg.fit(X_train, y_train)

# print accuracy
train_metric = logreg.score(X_train, y_train)
test_metric = logreg.score(X_test, y_test)
print('Accuracy of Logistic regression classifier on training set: {:.2f}'.format(train_metric))
print('Accuracy of Logistic regression classifier on test set: {:.2f}'.format(test_metric))

# print recall
pred = logreg.predict(X_test)
recall_metric = recall_score(y_test, pred, average=recall_average)
precision_metric = precision_score(y_test, pred, average=recall_average)
print('Recall of Logistic regression classifier on test set: {:.2f}'.format(recall_metric))
print('Precision of Logistic regression classifier on test set: {:.2f}'.format(precision_metric))

Decision Tree Classifier

# train the model
clf = DecisionTreeClassifier().fit(X_train, y_train)

# print overall accuracy
train_metric = clf.score(X_train, y_train)
test_metric = clf.score(X_test, y_test)
print('Accuracy of Decision Tree classifier on training set: {:.2f}'.format(test_metric))
print('Accuracy of Decision Tree classifier on test set: {:.2f}'.format(train_metric))

# print recall/precision
pred = clf.predict(X_test)
recall_metric = recall_score(y_test, pred, average=recall_average)
precision_metric = precision_score(y_test, pred, average=recall_average)
print('Recall of Decision Tree classifier on test set: {:.2f}'.format(recall_metric))
print('Precision of Decision Tree classifier on test set: {:.2f}'.format(precision_metric))

Linear Discriminant Analysis

# train the model
lda = LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)

# print overall accuracy
train_metric = lda.score(X_train, y_train)
test_metric = lda.score(X_test, y_test)
print('Accuracy of LDA classifier on training set: {:.2f}'.format(train_metric))
print('Accuracy of LDA classifier on test set: {:.2f}'.format(test_metric))

# print recal
pred = lda.predict(X_test)
recall_metric = recall_score(y_test, pred, average=recall_average)
precision_metric = precision_score(y_test, pred, average=recall_average)
print('Recall of LDA classifier on test set: {:.2f}'.format(recall_metric))
print('Precision of LDA classifier on test set: {:.2f}'.format(precision_metric))

Neural Network

# activation - ‘identity’, ‘logistic’, ‘tanh’, ‘relu’

mlp = MLPClassifier( 
    hidden_layer_sizes=(512,768,1024,512,128,16)
    activation='relu',
    learning_rate='adaptive',
    max_iter=5000000
)

mlp.fit(X_train,y_train)

# print overall accuracy
train_metric = mlp.score(X_train, y_train)
test_metric = mlp.score(X_test, y_test)
print('Accuracy of Neural Network classifier on training set: {:.2f}'.format(train_metric))
print('Accuracy of Neural Network classifier on test set: {:.2f}'.format(test_metric))

# print recall
pred = mlp.predict(X_test)
recall_metric = recall_score(y_test, pred, average=recall_average)
precision_metric = precision_score(y_test, pred, average=recall_average)
print('Recall of Neural Network classifier on test set: {:.2f}'.format(recall_metric))
print('Precision of Neural Network classifier on test set: {:.2f}'.format(precision_metric))

What We did

You will notice that much of the code above is very similar. This is part of what makes Scikit-Learn such an amazing framework – it’s relatively easy to change between Artificial Intelligence algorithms. In addition to the above algorithms, you can also use Support Vector Machines, Naive Bayes, K-Nearest Neighbor, and many more.

Once you’ve run the training, the scores show how each algorithm performed after it was trained. On any given data set, a different algorithm may work better. This is another benefit to Scikit-Learn – the easy access to a variety of models allows for experimentation to find the best model.

What Next?

While much of underlying math for these algorithms is well outside the scope of knowledge for most, it is useful to understand how Neural Networks operate. They are one of the more interesting implements of AI, and can be tuned to work with lots of data. However, that tuning requires some knowledge of what a Neural Network is and how it works. That’s what we’ll look at next week.

Getting an IT Job Without a Degree

I frequently talk to high school students or young adults who are hoping to land a lucrative IT job without a degree. Unfortunately, few of these individuals have the skills necessary to get the job they want. While many high schools now offer an increasing number of computer courses, rarely do they provide the depth or breadth of skills required by employers. However, this does not mean you need a degree to work in IT. In fact, some of the best techies I know started their career without a degree.

If it is possible to get a job without a degree, how do you do it? First, it’s important to recognize that IT jobs are broadly divided into two groups – system management and software development. System management jobs involve the management of computer systems, networks, servers, and other computer hardware. Additionally, cybersecurity professionals fall into this category (although there is often some overlap with software development skills). Software development jobs include web developers, software engineers, mobile application developers, and a variety of other jobs focused on using computer code to create applications for users.

Information Technology Certifications

Typically, individuals with system management jobs have degrees in Information Technology Management. However, those without a degree can show their competence with a variety of tech certifications. Some of the most widely known certifications are from the Computing Technology Industry Association better known as CompTIA. This includes CompTIA’s most well known certification for desktop maintenance and support – A+ certification. However, CompTIA offers a variety of other entry-level certifications as well. Network+ certification shows competency with network management and Security+ demonstrates basic security knowledge.

In addition to CompTIA certifications, a variety of other organizations provide IT certifications such as Cisco’s CCNA, Amazon’s AWS Certified Solutions Architect, and Google’s Associate Cloud Engineer. These certifications – unlike those from CompTIA – are vendor specific. However, the skills these certifications demonstrate are highly valuable to businesses.

Software Development Projects

Software developers typically have a bachelor’s degree in Computer Science. And, while there are some certifications available for programmers, they are not as widely desired as those for IT management. As such, it’s more difficult to demonstrate programming skills to a potential employer. However, this can be overcome by providing sample code on GitHub or BitBucket. If you want a job as a developer, spend some time creating professional-quality software applications that demonstrate your knowledge. Then, ensure to include a link to your repository in your resume. While you learn to code, don’t neglect learning SQL, HTML, and JavaScript. During the last decade, these skills have become standard for nearly all software development jobs.

I’ve talked to many young men who would like to become game developers. For them, I would recommend you consider your background in math and physics first. While there are libraries that make game programming easier, it’s hard to get far without some knowledge of matrix manipulation, trigonometry, gravity, and other topics that require a solid background in math and science.

Conclusion

While most people enter the IT world with a bachelor’s degree, it is possible to find good jobs without a formal education. If you want to work in the system management field, focus on certifications. If you want to work in software, focus on projects you can demo to show your ability. While either of the above will require effort, there really are no shortcuts in the IT world. Furthermore, if you are expecting an employer to pay you the high salaries common to the IT world, your efforts will be well compensated.

Basics of Artificial Intelligence – VI

Last week, we looked at languages used for artificial intelligence development. While there are numerous options available, Python has some of the best tools and is the easiest for the beginner to get started with quickly. However, setup can be quite a bit of work. First, setup Python and a development environment – I strongly recommend Jupyter, but VS Code is ok too. Next, begin installing all the necessary libraries – numpy, pandas, and sklearn. You may also wish to install matplotlib and seaborn. When you’ve got all the libraries installed, you can create a block of code in Jupyter to include all the necessary imports in your project such as what I have below. Some of these libraries are large, so you can prune the list to include only the tools you need.

Of particular interest are the sklearn modules. In this section, you will see imports for a variety of different AI algorithms including logistic regression, decision trees, nearest neighbors, linear discriminant analysis, naïve Bayes, and neural networks. These libraries will do the bulk of the work for us with little effort.

Import Libraries

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import cm
import seaborn as sns
import pandas as pd
import patsy

import itertools as it
import collections as co
import functools as ft
import os.path as osp

import glob
import textwrap

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.neural_network import MLPClassifier
from sklearn.mixture import GaussianMixture
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.ensemble import VotingClassifier, AdaBoostClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import BaggingClassifier
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import f1_score, accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix

Load Data

The next step for any AI project is to import the data and manipulate as needed

# import the data file from CSV format
data = pd.read_csv(open("data.csv", "rb"))

# show the number of records
recordCount = len(data.index)
print("Record Count: {:d}".format(recordCount))

# optional removal of data 
# this will remove all records with a FIELD_VALUE for FIELD_NAME
# data = data.drop(data[data.FIELD_NAME == 'FIELD_VALUE'].index)

# add optional flags for processing
# add a boolean field of true where COLUMN_NAME = VALUE
data.insert(loc=0, column='COLUMN_NAME', value=(data.mood == 'VALUE'))

# show the new record count
newCount = len(data.index)
print("Filtered Count: {:d}".format(recordCount - newCount))

Set Prediction Field & Input Fields

Now that you have loaded the data and manipulated as necessary, it’s time to setup the information for prediction. That will consist of two parts – the field to predict and the values to use for the prediction. So, if I want to determine the value of a house, the prediction value would be the cost and the input fields would include square footage, yard size, number of rooms, etc. In the code snippet below, I will set the fields for predicting home price.

# CSV field to predict
predictionField = 'home_value'

# CSV fields to use for prediction
feature_names = ['square_footage', 'yard_size', 'num_room', 'num_bath']

# extract data into feature set and prediction value (X,y)
X = data[feature_names]
y = data[predictionField]

Split Into Groups

The next important step is to split the data into two groups – training data and test data. The training data will be used by the AI algorithm to ‘learn’ the data. Then, the test data is used to see how well the algorithm actually did in learning the data relationships.

# split into groups
X_train, X_test, y_train, y_test = train_test_split(X, y)

# scale data
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Next Steps

So far, we have loaded the necessary libraries, loaded the data, updated the data to exclude any records we don’t ant, added fields as necessary to augment the data, separated the data into features and prediction fields, and broke the data into groups for training. The next step is where the magic happens – the artificial intelligence algorithm. We’ll look at that next week…

Crypto Currency Problems

Even with the recent decline in cryptocurrency prices, enthusiasm remains high among blockchain supporters. However, after more than a decade, several key problems still remain before wide-spread adoption can be expected.

Investment / Currency Dilemma

The first problem is the investment/currency dilemma. Blockchain evangelists repeatedly tell us what an amazing investment crypto currencies are. Then, they tell about how crypto is replacing fiat currencies. Unfortunately, however, it’s not possible to be both an investment and a currency. Why? Because the two are – for the most part – mutually exclusive. Investments require volatility – something we see in abundance with crypto currencies. However, an actual currency requires stability. Nobody wants to be paid for work done this month at a wage that is wildly fluctuating. So, we need to decide which it is – a currency or an investment.

While some currencies – known as stablecoins – strive to maintain a 1-to-1 relationship with the dollar, this seems to fly in the face of the argument that fiat currencies should be replaced with crypto currencies. While these stablecoins may work great for purchasing goods and services, why not simply use the dollar instead and save yourself the transaction costs?

Energy Consumption

I have previously blogged about the crypto energy issue. In short, crypto currencies consume massive amounts of electricity while many around the globe are arguing that we need to reduce energy usage to prevent climate change. However, even if you reject climate change; it’s no secret that many places around the world suffer from energy shortages. Even in the US, brownouts are not uncommon in many communities on the hottest days of summer. Is it really reasonable to consume massive quantities of energy to create digital money?

Cyber Terrorism

Crypto has a long history of being used for money laundering, drugs, hacking, and other nefarious uses. While many will argue that this represents only a very small portion of the crypto market, it none-the-less is a real concern that the crypto community needs to address. This is particularly obvious with the growth of ransomware demanding payment in Bitcoin. Regardless of the actually percentage of illicit usage, it still reflects poorly on crypto currencies and will cause increasing oversight by government entities which could negatively impact the crypto markets and long-term viability of blockchain technologies.

Quantum Computing

Nobody seems to talk about it much, but quantum computing could unravel the entire blockchain in the blink of an eye. Since crypto currencies depend on encryption, it is absolutely essential that the encryption algorithms used be unhackable. Given the history of encryption protocols, that seems unlikely. However, it becomes even more unlikely when quantum computing enters the mainstream. While it may be years off, the introduction of a large quantum computer would allow the owner to rewrite the entire blockchain by simply having the majority of computing power on the internet – something not unreasonable with a modest quantum computer. This would rapidly shift financial power into the hands of a single individual.

Conclusion

While I continue to hear people talk about all the great things crypto currencies have to offer, few are interested in addressing the issues that will either prevent widespread adoption or create growing threats to commerce moving forward. If, indeed, nobody is interested in resolving these issues to support the long-term growth of blockchain technologies, then doesn’t it support the notion that this is really nothing more than a Ponzi scheme?

Basics of Artificial Intelligence – V

Up to this point, we have talked about some of the fundamental algorithms for artificial intelligence and how they can be implemented in Java. Java is a great language for speed and wide usage in the software world. However, Java is not the only choice for implementing artificial intelligence. In this post, we will examine three of the most popular languages for creating artificial intelligence solutions.

Java

Java is one of the most widely used computer programming languages available today. Since it’s development in the 90’s, Java has been widely used for web development as well as for creating cross-platform applications. Java runs in a virtual machine – the Java Virtual Machine (JVM). Any computer that has an implementation of the JVM can run a Java program. Additional languages have been developed that are comparable with the JVM as well including Scala, Groovy, and Kotlin. Java is object oriented, compiled, and strongly typed. Compiled languages are fast, but strongly typed languages can be problematic in artificial intelligence as data structures must be well defined or generics implemented which can complicate code.

R

R is a statistical programming language used more by statisticians than computer programmers. It is designed to deal with matrices of data, and as such is very well suited for AI development. Additionally, R has a multitude of packages that can easily create graphs and charts to help analyze data dependencies. However, where R is lacking is in ease of use. Additionally, R isn’t as well suited for deploying AI applications – but rather for research.

Python

Python has been around since the early 90’s. However, it’s mainstream use has only exploded during the last decade or so. Because of it’s simple syntax, Python has been widely embraced by people outside of the programming community – and in educational settings. Because of this, Python use has exploded for utilities, system administration tasks, automation, REST-based web services, and artificial intelligence. Furthermore, Python has excellent frameworks and tools for AI development. Of particular interest are Jupyter and SciKit Learn. These tools greatly simplify AI development, and allow developers to work on solving problems more quickly than Java and with substantially less setup and expertise.

MATLAB

While talking about AI languages, I must also mention MATLAB or, it’s open source alternative Octave. These platforms are incredibly popular in academic communities. However, MATLAB – and the associated toolkits – are expensive and far more difficult to use than Python. Additionally – like R – they don’t really create deployable solutions for customers. However, if you are a mathematician, you may find MATLAB more to your liking.

Conclusion

When I work on artificial intelligence code, I will often use R and Python. While I have been a Java developer for years, and have implemented various AI solutions using Java, I find it far more complicated than the alternatives. I often use R for analyzing correlation, creating charts, and performing statistical analysis of data using R Studio. Then, when it’s time to actually create the neural network, I will use Python and Jupyter.

If you prefer, AI frameworks are available – or can be created – for any other language. If you want the fastest solution, you may look into C libraries. If you want something that will run on a browser in a website, JavaScript may provide a better solution. In short, there are a variety of options for AI. However, for the novice, you’ll probably not find anything better than Python to get you started.

Basics of Artificial Intelligence – IV

Previously, we examined various functions that are used across a variety of artificial intelligence applications. Today, we’re looking at a specific algorithm. While not typically considered artificial intelligence, linear regression is the most basic means of allowing a computer to learn how to solve a problem. For linear regression, the user provides an array of input values as well as an array of expected output values. In algebra, these would be the x and y values of the equation respectively. Additionally, the user will need to provide a degree for the polynomial. This is the highest exponent for the x value in the equation. For example, a third degree polynomial would be ax^3 + bc^2 + cx + d.

Our first class will be the generic base class shared across all linear regression implementations. In this class, we define a method to calculate the score of a set of values as well as an abstract method to calculate the coefficients. NOTE: Referenced code is available for download from BitBucket.

import com.talixa.techlib.ai.general.Errors;
import com.talixa.techlib.math.Polynomial;

public abstract class PolyFinder {
  protected float[] input;
  protected float[] idealOutput;
  protected float[] actualOutput;
  protected float[] bestCoefficients;
  protected int degree;
	
  public PolyFinder(float[] input, float[] idealOutput, int degree) {
    this.input = input;
    this.idealOutput = idealOutput;
    this.actualOutput = new float[idealOutput.length];
    this.bestCoefficients = new float[degree+1];
    this.degree = degree;
  }

  public abstract float[] getCoefficients(int maxIterations);
	
  protected float calculateScore(float[] coefficients) {
    // iterate through all input values and calculate the output
    // based on the generated polynomials
    for(int i = 0; i < input.length; ++i) {
      actualOutput[i] = Polynomial.calculate(input[i], coefficients);
    }

    // return the error of this set of coefficients
    return Errors.sumOfSquares(idealOutput, actualOutput);
  }
}

Our next step is to create an actual implementation of code to get the coefficients. Multiple method are available, but we will look at the simplest – greedy random training. In greedy random training, the system will generate random values and keep the values with the lowest error score. It’s a trivial implementation and works well for low-order polynomials.

import java.util.Arrays;
import com.talixa.techlib.ai.prng.RandomLCG;

public class PolyGreedy extends PolyFinder {
  private float minX;
  private float maxX;
	
  public PolyGreedy(float[] trainingInput, float[] idealOutput, int degree, float minX, float maxX) {
    super(trainingInput, idealOutput, degree);
    this.minX = minX;
    this.maxX = maxX;
  }
	
  public float[] getCoefficients(int maxIterations) {
    // iterate through the coefficient generator maxIterations times
    for(int i = 0; i < maxIterations; ++i) {
      iterate();
    }
    // return a copy of the best coefficients found
    return Arrays.copyOf(bestCoefficients, bestCoefficients.length);
  }
	
  private void iterate() {
    // get score with current values
    float oldScore = calculateScore(bestCoefficients);
		
    // randomly determine new values
    float[] newCoefficients = new float[degree+1];
    for(int i = 0; i < (degree+1); ++i) {
      newCoefficients[i] = RandomLCG.getNextInt() % (maxX - minX) + minX;
    }
		
    // test score with new values
    float newScore = calculateScore(newCoefficients);
		
    // determine if better match
    if (newScore < oldScore) {
      bestCoefficients = newCoefficients;
    }
  }
}

With the greedy random training, we define the min and max values for the parameters and then iterate over and over selecting random values for the equation. Each time a new value is created, it is compared with the current best score. If this score is better, it becomes the new winner. This algorithm can be run thousands of times to quickly create a set of coefficients to solve the equation.

For many datasets, this can create a workable answer within a short time. However, linear regression works best less complicated datasets were some relationship between the x and y values is known to exist. In cases of multiple input values where the relationship between variables is less clear, other algorithms may provide a better answer.

Basics of Artificial Intelligence – III

Some artificial intelligence algorithms like input values to be normalized. This means that all data is presented within a predefined range, typically either 0 to 1 or -1 to 1. Normalization algorithms take an array of input values and return an array of normalized values.

Denormalization is the opposite process. In denormalization, an input array of normalized values is presented and the original values are returned. Denormalization is useful when the output value of an AI algorithm is normalized. Since the normalized value is not in an expected range, the user must denormalize to determine the real number.

A simple example of number normalization is the Celsius temperature scale. All temperatures where water exists as a liquid exist between the values of 0 and 100. To normalize the temperature for an AI algorithm, I could simply divide each input by 100 to create an array of numbers between 0 and 1. When the output value is .17, the user would denormalize by multiplying by 100 to get a value of 17 degrees.

Of course, most normalization is not this simple, so we use algorithms to do the work.

public static float[] normalizeData(final float[] inputVector, final float minVal, final float maxVal) {
	float[] normalizedData = new float[inputVector.length];
	float dataRange = maxVal - minVal;
	for(int i = 0; i < inputVector.length; ++i) {
		float d = inputVector[i] - minVal;
		float percent = d / dataRange;
		float dnorm = NORMALIZE_RANGE * percent;
		float norm = NORMALIZE_LOW_VALUE + dnorm;
		normalizedData[i] = norm;
	}
	return normalizedData;
}

Note that two constants are defined outside this function. The NORMALIZE_RANGE which is 2 when normalizing to the range of -1 to 1 and the NORMALIZE_RANGE is 1 if we are normalizing to a range of 0 to 1. Additionally, the NORMALIZE_LOW_VALUE is the low value for normalization, either -1 or 0.

In the above normalization function, the user provides an array of input values as well as a min and max value for normalization. Then, we create a new array to hold the normalized values. The code then iterates through each input value and creates the normalized value to add to the normalized data array to return to the user. The actual normalization takes the following steps:

  • subtract the minimum value from the input value
  • divide the output by the data range to determine a percentage
  • multiple the normalized range by the percent
  • Add the value to the normalized low value.

For a concrete example, consider normalizing degrees Fahrenheit. If we were to input an array of daily temperates, we might have [70, 75, 68]. For the normalization range, we would pick 32 and 212. Following the above steps for the first temperature:

  • 70 – 32 = 38
  • 38 / (212 – 32) = .21
  • 2 * .21 = .42
  • -1 + .42 = -.58

If we followed through with the other temperatures, we would end with an output array of [-.58, -.52, -.60]. To denormalize, the below denormalization function can be used. Note, you must use the same min and max values that you used in normalization or your denormalized output value will not be the same scale as your input values!

public static float[] denormalizeData(final float[] normalizedData, final float minVal, final float maxVal) {
	float[] denormalizedData = new float[normalizedData.length];
	float dataRange = maxVal - minVal;
	for(int i = 0; i < normalizedData.length; ++i) {
		float dist = normalizedData[i] - NORMALIZE_LOW_VALUE;
		float pct = dist / NORMALIZE_RANGE;
		float dnorm = pct * dataRange;
		denormalizedData[i] = dnorm + minVal;
	}
	return denormalizedData;
}

This is the most basic normalization function. Other options may be to use the reciprocal of a number (but this only works for number greater than 1 or less than -1) or to use a Z-score.

Basics of Artificial Intelligence – II

Last week, we talked about distance calculations for Artificial Intelligence. Once you’ve learned how to calculate distance, you need to learn how to calculate an overall error for your algorithm. There are three main algorithms for error calculation. Sum of Squares, Mean Squared, and Root Mean Squared. They are all relatively simple, but are key to any Machine Learning algorithm. As an AI algorithm iterates over data time and time again, it will try to find a better solution than the previous iteration. A lower error score indicates a better answer and progress toward the best solution.

The error algorithms are similar to the distance algorithms. However, distance measures how far apart two points are whereas error measures how far the AI output answers are from the expected answers. The three algorithms below show how each error is calculated. Note that each one builds on the one before it. The sum of squares error is – as the name suggests – a summation of the square of the errors of each answer. Note that as the number of answers increases, the sum of squares value will too. Thus, to compare errors with different numbers of values, we need to divide by the number of items to get the mean squared error. Finally, if you want to have a number in a similar range to the original answer, you need to take the square root of the mean squared error.

public static float sumOfSquares(final float[] expected, final float[] actual) {
	float sum = 0;
	for(int i = 0; i < expected.length; ++i) {
		sum += Math.pow(expected[i] - actual[i], 2);
	}
	return sum;
}
	
public static float meanSquared(final float[] expected, final float[] actual) {
	return sumOfSquares(expected, actual)/expected.length;
}
	

public static float rootMeanSquared(final float[] expected, final float[] actual) {
	return (float)Math.sqrt(meanSquared(expected,actual));
}

Security Consulting & Testing Services

For most of my professional career, I have been involved in security in one way or another. When I started my career in the Army, I trained as a Unix System & Network administrator. During that time, I often tinkered with security on our systems. In my first job outside the Army, one of my responsibilities was network security as well as managing offsite backups. Later in my career, I would be responsible for testing software applications for PCI compliance.

This year, I decided to start gaining certifications in the security realm. In March, I earned CompTIA’s Security+ certification. Then, in May, I took the Beta version of CompTIA’s PenTest+ version 2 exam. Today, I received notification that I passed that exam. These certifications shows that I am qualified to test systems for security issues and provide feedback to customers wanting to ensure their systems are as secure as possible.

In addition to computer security testing, I have previously studied locksmithing and physical security. Adding these two skills together gives me lots of avenues to approach security and vulnerability testing for clients – both on their networks and their physical facilities.

If you are interested in having your network security tested, please reach out to Talixa Software & Service, LLC for more information.

Basics of Artificial Intelligence – I

For the next several weeks, I’m going to write about some basics of artificial intelligence. AI has been around for decades, but has become particularly popular during the last 20 years thanks to advances in computing. In short, artificial intelligence aims to use computers to solve complex problems quicker and more accurately than human can. Early AI was far different than what we have today. Typically, early AI systems would use complex logic programmed into the system to solve problems. Examples include Dijkstra’s Algorithm or the logic programmed into most games. Modern systems, however, are capable of actually learning for themselves given enough data.

Distance Algorithms

The first set of algorithms necessary to understand AI are distance algorithms. These algorithms are used to determine how close a system is to the right answer. This is necessary when an AI system is learning so that it knows how far off the answer it is. The three main distance algorithms are Euclidian, Manhattan, and Chebyshev. Euclidian distance measures distance as a straight line “as the crow flies” between points on a grid. Manhattan distance travels along one axis and then another, like a taxi traversing New York City. Finally, Chebyshev distance travels like a King on a chessboard alternating between each axis as it gets closer to the target.

In each of the code snippets below, written in Java, two vectors are passed in – v1 and v2 – where each vector represents a data point. In each instance, the size of the vector would determine the dimensionality of the data. For example, a float[2] would be a 2-D vector which could be plotted on a cartesian plot.

Euclidian Distance Algorithm

public static float euclidean(final float[] v1, final float[] v2) {
	float sum = 0;
	for(int i = 0; i < v1.length; ++i) {
		sum += (v1[i] - v2[i]) * (v1[i] - v2[i]);
	}
	return (float)Math.sqrt(sum);
}

In the above code, we iterate through two arrays of floating point numbers and then sum the squares of the differences. Finally, return the square root to determine the distance.

Manhattan Distance Algorithm

public static float manhattan(final float[] v1, final float[] v2) {
	float sum = 0;
	for(int i = 0; i < v1.length; ++i) {
		sum += (float)Math.abs(v1[i] - v2[i]);
	}
	return sum;
}

For the Manhattan distance, we calculate and return the sum of the absolute values of the differences.

Chebyshev Distance Algorithm

public static float chebyshev(final float[] v1, final float[] v2) {
	float result = 0;
	for(int i = 0; i < v1.length; ++i) {
		float d = Math.abs(v1[i] - v2[i]);
		result = Math.max(d, result);
	}
	return result;
}

Finally, in the Chebyshev algorithm, the value is the maximum dimension in any direction.