Developer Certification

The IT world is full of certifications. When I started in the tech world, CompTIA’s A+ certification was the standard for computer techs and the Microsoft’s MCSE certification showed you were a master of the Windows system admin world. Today, the IT world has numerous certifications available to indicate proficiency in networking, system administration, hardware, security, application proficiency, and so forth. The world also has numerous programming certifications now too. Two of the more well known certifications include Microsoft’s MCSD and Oracle’s Java certifications. But are they as useful A+, MCSE, CEH, or other certifications? I personally don’t think so. In all my days as a software engineer I have never once interviewed a single developer who had any programming certification. I have never had a fellow developer tell me about passing the newest version of a developer certification. I have never been asked by anyone if I’m certified in a programming language. It has literally never once mattered. In the past, I had considered seeking certification as a Java developer. Then I saw the sample test questions. My first thought? If I ever saw this kind of code in real life I would do everything in my power to ensure that the author was immediately fired. The questions test your ability to remember esoteric language rules — not things I want to ever see used in production systems. Many of the questions ask “what is the output of the below code” and provide a code snippet. If you have to ask what the output of a complex code fragment is, you probably wrote it poorly. If I really needed to know, I’d copy the code and run it. None of this is really of any value. So, your brain is a human code compiler — that’s great. But the real questions remain unanswered — do you understand design patterns? Can you decompose complex problems in to proper object models? Can you write maintainable code? Do you have good coding style? Do you document your code? Do you understand networks and databases? When I interview a developer, these are the questions I need answered — not what the output of a horribly convoluted nested loop is.

Social Media?

This past week, I vacationed with my family in Disney World. It’s a favorite vacation spot for my family. While I was there, I constantly saw people looking at Facebook, Instagram, and other social media forums. The problem? They were completely ignoring the very people they were vacationing with. I assume most people go on vacation with their family or friends because they enjoy spending time with them. Sadly, that was not demonstrated by the people I saw. In one example, I saw a couple both looking at Facebook while their young children pleaded to be lifted up so they could ring the bell that was just overhead. Their parents never heard them. The children tried lifting each other up to no avail. Then, the line moved forward and the opportunity was lost. Over and over again, while at dinner or in line for a ride, I saw entire families too interested in what people they barely know were doing to pay attention to the people they love. I once heard it said that social media should be renamed anti-social media. Sadly, I agree. All to often our social media habits actually prevent us from engaging in real social behavior and instead we focus on a virtual world – a highly curated reality where everyone’s life is picture perfect and utterly fake. We take selfies to show everyone our life is awesome too. Yet, the reality is, it’s all hollow and meaningless. While we’re trying to impress someone we knew in high school, the people we actually love are sitting on the sidelines of our life. Shut off the phone — spend actual time with the people that matter instead of wasting your watching what everyone else is doing.

What Language to Learn?

I frequently talk to parents as well as people in the educational community about what language kids should learn. Maybe they remember their uncle talking about Fortran, or they have a relative that uses Python – but they want to know what their children or students should be learning today. It’s a great question as the world of computer programming is always changing. The last 20 years has seen countless languages gain widespread usage — and I’m sure that’s not going to change anytime soon. Unfortunately, not everyone is up-to-date with their computer programs. Just a few years ago, a child where I was attending church asked if he could job shadow me for an assignment in his computer programming class. Always wanting to encourage young people to pursue technology, I was happy to oblige. When he came go my office, the first question I asked was what language he was learning. He gleefully responded: “COBOL!”. This was just a few years ago, and a student was being taught COBOL? I asked what else he was learning, and he said they were learning RPG and SQL. Wow. The only thing useful there is SQL – COBOL and RPG are long dead. But even SQL isn’t necessarily useful on its own as it’s not really a programming language, but a language for accessing data. So, what would I recommend people learn today? Well, a friend showed me a great website to help someone pick a language based on their interests – Best Programming Language For Me. The languages provided are modern, useful languages and their selections reflect the best choices for someone new to the art. Another great resource is the IEEE 2017 Top Programming Languages. Either of these sites can help you pick a language with a future – unlike learning COBOL today.

Developer Maturity

Today, I was onsite at a customer location. This particular customer has an interest in programming, and showed me a site he was checking out that asked a variety of questions to determine what language he should learn. Do you want to write games, web apps, desktop apps, etc. For nearly every sequence of answers, I could predict what language they would pick. Why? Because I have used countless languages over the years and know where each one excels. Another customer recently asked me to create a very trivial service that would consume JSON messages sent from a server. You could write a Java app for this, but why? My suggestion was either a simple PHP script or a Python app running a REST service with Flask. Either option is far simpler than writing Java code to handle the processing. One of the key indicators of a developer’s maturity is their ability to pick the proper technology for the problem at hand. For the customer, the technologies selected can make a huge difference not only in the price of the software, but in it’s success as well. This extends beyond programming languages. Mature developers understand build systems, revision control systems, project management methods, design patterns, and so much more. For customers, picking an inexperienced developer can mean substantially higher development cost, increased long-term cost of ownership, increased development times, and numerous other problems. An experienced developer can help you navigate the technology map and select the best options in order to provide the best user experience at the best cost.

(Fr)agile Development

Agile development seems to be the ‘in’ thing for software development firms today. Everyone has their daily standup meeting, scrum masters, sprints, and so forth. But does it really bring any true value to software development? I don’t think so. In fact, I have taken to calling it fragile development. Why would I say that about such a beloved idea? Because my experience is that it creates horrible software. Sprint after sprint, developers work to output code often without knowing the big picture. Day after day, short-sighted development goals are pushed so you get enough points done and complete everything for the sprint. Managers now have even more ability to micromanage since everything has to be done at the end of the sprint and everyone has to report in with their daily progress. Time is wasted in meeting after meeting that brings little if any actual value to the team. What does all this mean? It means that developers are always under the gun to output code quickly so it’s done for this sprint. This causes developers to take the short path instead of analyzing things more thoroughly since such analysis would take more than the allotted points and may push things off schedule. Developers are never able to try new things because failure is not an option — points must get done and software must be pushed. Software engineers never have an opportunity to practice engineering skills or architect larger systems because everything is broken down into bite-sized pieces without any real worry about how it all fits together. To make it worse, important technological changes and refactoring get pushed to the bottom of the list since they do not have an immediately visible benefit for the organization. In the end, developers never grow or develop, code stagnates, and poor software becomes the norm. Sprint after sprint turns into a death march for features, bugs never get fixed (unless they bring immediate business value), and the expertise of senior developers is ignored in favor of short-sighted business objectives. If you want quality software, leave engineers do what they do, give them the latitude to make the necessary decisions to create the product you want. Qualified engineers are more than capable of creating awesome software — why hinder them?

The micro:bit

Yesterday, I had the pleasure of playing around with a piece of technology called the micro:bit. The micro:bit is a small hardware platform intended primarily for introducing young people to programming and tinkering. It’s a small device, not quite 2 inches square, but it is amazing. In fact, I’d say it’s probably one of the coolest pieces of technology I’ve played with in a while. What makes it so awesome? First, it runs Python. While I’m not primarily a python programmer, I do recognize that it has become one of the most widely used languages — not only for tinkerers, but also for professional development. This makes the micro:bit far more accessible to young people than C++ used by the Arduino controller (NOTE: I love Arduino, but the micro:bit is certainly more ‘kid-friendly’) The second thing I love about the micro:bit is that I had to install exactly nothing on my computer to get it working — no IDE, no flashing utility, nothing at all. The IDE is online, so you can type in your favorite browser and download the .hex file when you’re done. Flashing the device could not possibly be easier. When you plug the device in via a standard USB phone cable, it’s recognized as a USB thumb drive. Simply copy the .hex file to this virtual drive and within moments your device is flashed and you can see the results of your work. If the above weren’t already enough to give the micro:bit 5 stars, there’s more. The micro:bit includes an impressive hardware selection and associated API. There are 2 buttons, a 5×5 LED grid, accelerometer, magnetometer, and bluetooth. The form factor includes pads big enough to use alligator clips for interfacing with external hardware too — so you don’t even have to solder anything. While I’ve only tinkered with this device for a short time, it is definitely one of the more impressive hackable hardware pieces I’ve seen in quite some time. This needs to be in the hands of every elementary and middle school student interested in programming or hardware. The micro:bit is, in my opinion, a real game-changer.

“Time Saving” Frameworks

Over the course of my career, I have seen all kinds of advancements in programming — some of them good, others bad. Today, there seems to be a trend to use all kinds of frameworks, design patterns, and technologies in an effort to save time. Unfortunately, what seems to save time in the short term often causes trouble long term. I must start out by saying that I’m not suggesting that all frameworks and technologies are a bad thing. For example, using an MVC approach for developing web applications is an excellent idea as responsibilities are cleanly separated between the HTML, the business logic, and the data access code. This works very well and improves maintainability of code. However, other frameworks are less valuable to me. For example, the popular lombok package allows Java developers to create data classes without manually creating the getters and setters for fields. This sounds like a great time saver as you can avoid writing code! But here’s the problem — it’s often useful to be able to find where variables are set, and you simply can’t do that if the setter doesn’t exist until compile time. Furthermore, this package saves little time since Eclipse has the option to generate (real) getters and setters already. Why is this package needed? I don’t believe it brings any value — just another technology for the sake of technology. In Android code, I see all kinds of frameworks being used. Unfortunately, most of them only obfuscate the code. While there is value in the MVP model, many Android activities are too small to really gain much from this model and the excessive number of interfaces begins to be a drag on development. Speaking of interfaces, they are probably the most overused design pattern. Again, I have to start out by saying that I absolutely love interfaces. Properly used they are one of the most valuable features of Java. Unfortunately, when everything becomes an interface and you need dependency injection to create the objects things start to complicated — often without any real benefit. Interfaces allow us to plan for the future — to admit up front that other implementations may be needed later. But in many cases this is simply never going to happen. Database code should certainly be written using interfaces wherever possible because it is not only reasonable but indeed likely that the project will — at some point during its lifetime — use a different database. Other things may make sense for interfaces too such as code for credit card processing, sending messages, etc. Ask yourself — is there a reasonable expectation that we will have multiple ways to do this? If the answer is no, why are you using an interface? Again, I have no problem with these technologies. But for me, my first choice will always be to use the simplest stock Java code I can and only move on to more complex frameworks when necessary. My code footprint is smaller, code is easier to maintain, and new developers can more easily move into developing or supporting frameworks with fewer complex patterns and technologies.

What Does Expert Mean?

I started tinkering with computer programming twenty years ago. It started pretty simple with learning HTML, then I moved on to learn C, then C++, and Java. Along the way, I picked up numerous other languages. For the last 17 years, writing software has been my profession. I consider myself an expert programmer, particularly in Java. But what does expert mean? I see resumes of people who have 3 or 4 years of experience and claim to be an expert in Java. Is that possible? Unfortunately, I think the IT world has cheapened the idea of being an expert to a point where it is meaningless. In the competitive market for software developers, individuals market themselves as an expert so they can acquire the most lucrative job opportunities. Does this really hurt anyone? Yes, it really does. Companies have self-proclaimed experts write their software. Then, when that worker’s contract is done, or another more exciting project comes up, that expert jumps ship. Now, the company is left to maintain that code. And this is usually the point where the business finds out that the ‘expert’ they hired wasn’t an expert at all. Expertise in computer programming means an ability to analyze the problem and come up with a solution that is maintainable and stable. But all too often, we find ‘experts’ writing code that nobody wants to maintain because it is convoluted, poorly documented, fails to comply with style and naming conventions, and buggy. We find database schemas that are bloated and make no sense. We see poor project hierarchy and little object decomposition. In short, we see garbage code. When you hire a programmer, don’t let them fool you — if they’ve only been writing code for a few years, they’re not an expert.

The Importance of Engineering

During my career, I have encountered projects that were well written and those that were not. Often times, the poorly written projects were farmed out to development firms in under-developed parts of the world such as India or Pakistan. What is it that makes code poorly written? For me, the most important aspect of well written code is maintainability. No other metric is as easily correlated to long-term revenue and cost as maintainability. Code written today should be able to be quickly modified in the future when bugs are found, when requirements change, or when new features are desired. How can this be accomplished? First, projects need to be logically laid out. Code packaging schemes are necessary to easily navigate large projects. Throwing everything in a single folder will ensure that future developers have a more difficult time finding code they are looking for. Second, files and classes must be named logically — otherwise, every file becomes ‘mystery meat’ that is only identifiable when it’s opened. Third, classes should broken up appropriately. I have worked with projects were there was only a single data access object for the entire schema. Monolithic files such as this are substantially more difficult to navigate, and they can also cause problems with source control if multiple developers are trying to edit different parts of the file. Fourth, consistent style should be followed and whitespace should be cleaned up. Following code with different styles, or with 10 lines of whitespace in the middle is more difficult. Imaging reading a paragraph in a book where the author decided to add 10 extra blank lines — code is no different, it is intended to be read. Fifth, properly breaking out functions is imperative. Too often I have seen code were, for example, the code to send an email was entirely replicated over and over again instead of placed in a single function. When email standards change (for example, changes to security) or when the tools you use to send email change (such as switching from SMTP to a REST based service such as MailGun), you can be sure that the time taken with a poorly engineered codebase will be longer and that you are more likely to have a greater number of bugs. These are some of the biggest issues I typically encounter in project after project and they cause a significant problem to businesses. Unfortunately, the customer is often unaware of how poorly the code is written. When they hire someone else to maintain the code, they wonder why it takes so long to update or why there are so many bugs. They falsely believe the new developer is less competent and attribute the problems to him or her. Long term, time-to-market suffers, customer confidence is diminished from bugs, and business opportunities are missed because of wasted time. When you hire developers — particularly when they are outsourced — it is imperative to ensure that they are writing good code. Ask to see code samples before hiring, perform frequent code-reviews with them, and specify coding standards they must follow. If you don’t, the money you save by using offshore resources will be lost during the course of maintaining the application.